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we call type (1,l) . Similarly we define the rearrangements of type (2,2): 2T2+ Q+ 2T2; 

(1,2): T2+ U-t 2Ta; (0,1): 0+ S+ T2. The last two rearrangements occurring in the reverse 
order we denote, respectively, by the symbols (2,l) and (1,O). The notation (1:l) denotes a 
continuous deformation of the connected component of the integral manifold on which there are 
no critical points. The symbols of simultaneously occurring rearrangements are connected by 
a plus sign, or will indicate an integral multiplier, if they are identical. 

Let us now enumerate the bifurcation sequence taking place along the dash-dot arrows in 

Fig.1: a) 2 (0,1), (2, i), (i,2), (2,2), 2 (1, 1); b) (0, i), (1 : 1) + (0, 1) i c) (0, i), (1,2). The trans- 
ition from component 2 to component 5 from above (Fig.3) is accompanied by bifurcation 2(1 : 
i) + 2 (0, 1) , and from below by 2 (1,2). In passing from component 5 to component 3 we have 
bifurcation 2 (2, I), and when emerging from component 5 into region k _< 0 we obtain bifurca- 
tion 4 (1, 0). 

1. 

2. 

3. 

4. 

5. 

6. 
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ANALYTIC SOLUTIONS IN THE THEORY OF COAGULATING SYSTEMS WITH SINKS* 

A.A. LUSBNIKOV and V.N. PISKUNOV 

Analytic solutions are derived for the problem of the evolution of the 
mass spectrum of three models of coagulating systems with three- 
dimensional uniform sinks. The case when the rate of drainage of particles 
with masses greater than some critical value G is higher compared with 
the rate of an individual act of coalescence is considered, and the 
problem is reduced to the consideration of a coagulation process without 
sinks, but where coagulation of particles of mass greater than G is for- 
bidden. Coagulation kernels that are a) independent of the mass of the 
colliding particles, b) proportional to the sum, and c) equal to the 
product of masses of colliding particles are considered. Exact expres- 
sions are obtained for the dependence of the coagulating particles mass 
spectrum and for the sediment , and their asymptotic form in the limit 
when G is large is analyzed. 
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1. A three-dimensional uniformly coagulating dispersed system is defined by the mass 
spectrum Cg (t) , i.e. the concentration of the dispersed phase particles of mass g at the 
instant of time t. It is often convenient to assume that each particle consists of unit mass 
monomers. As the latter, we may select individual molecules that constitute the particle. 
Then g is the number of molecules in a particle whose mass is measured on molecular massunits. 
This definition is used below. 

The reason for the time evolution of the mass spectrum in coagulating systems are the 
separate acts of particle coalescence, whose velocity K(Z,,L,) (the coagulation kernel) is 
assumed to be a known function of the masses 1, and l,of the colliding particles, determined 
from the independently solved problem of the relative motion of two particles in the carrier 
medium. 

Knowing K (llr I,) we can set up an equation (the Smoluchowski equation) controlling the 
time evolution of the mass spectrum. Details of the derivation can be found in /l, 2/, the 
essence of which is that the rate of spectrum variation d,c, is equated to the difference 
of the rate of all coalescence processes resulting in the appearance of g-mers less the rate 
of their loss produced by the sticking of g-mers to all other particles. The equation has 
the form 

The following 
references there): 

dcg 1 ‘--l m 

dt=-2- ;r: K (g - 191) c.+q - cg z K (a’4 cl (1.1) 
I=1 l-4 

analytic Solutions exist for three models with kernels (see /l-3/ and 

Exact solutions are obtained below for three more models with coagulation kernels of the 
form: 

Here Ki (E,,&) is any of the kernels (1.2), and &c(l) is the step function: @o(1) = 1 when 
l<G and eo(l)=Owhen l>G. The kernels (1.3) correspond to the fact that the particles 
of mass greater than G cannot coagulate. The physical meaning of the model considered here 
is that particles of mass greater than G are momentarily taken out of the system and fall into 
the sediment whose spectrum is cg (t)&(g)(& (g)g 1 - e,(g)). Thus the generating factor simu- 
lates the particle sink. 

2. In coagulating systems with kernels of the form (1.3) the mass spectrum develops in a 
fairly specific manner. In the range of masses 1 ,<g<G the coagulation proceed regularly, 
i.e. the concentration of g-mers decreases with time to zero. In the range G< g< 2G part- 
icles incapable of further evolution collect in the sediment. We will denote the respective 

spectra by ca- (t) and cgc (t). Then 

cg- (t) = Cg (t) 80 (g), $?+ (t) = ‘+ (t) GG (g) (2.1) 

Multiplying (l.l), respectively, by es(g) and 80(g), we obtain the following equations 

which control the time evolution of the active part of the SpeCtrUm cg- (t) and the spectrum 

of the sediment %!+ 0) 

dcg- (4 
dt = + eG(g) 2 Kg (g - I, z)c,lq- - es- k Ki (89 2) CI- 

I-1 14 

dt = +-G (g) E Ki (g - 1, I) C;-CC, 
dcg+ 

1-I 

(2.2) 

(2.3) 

Thus to determine the spectrum it is necessary to solve (2.2), after which the sediment 
spectrum is determined by integrating (2.3). 

Below, a complete solution is obtained of the problem of coagulation in model systems 
of initially monodispersed particles, i.e. the initial conditions for (2.2) and 

selected in the form (6,,, is the Kronecker delta) 

cg (0) = %?.I 

(2.3)-are 

3. First, the case of coagulation kernel K =: 2&(1,)&(1,) is considered. 
itial condition (2.4) it is convenient to use the variables v,r introduced by 

/2/ 
"Bf (9 = vf (r) Cl 6) 

(2.4) 

For the in- 
the equations 

(3.1) 
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Subsituting 

r = s c, (f) df 
n 

(3.1) into (2.2) and (2.3) we ohtain 

L&c e. (g) E v;_,v, 
l-1 

*=ec(g)s 
8-l c v&- 

l-1 

(3.2) 

The solution of the first equation of (3.2) with initial condition (2.4) has the form 

vg (7) = ?@ (3.3) 

Substituting (3.3) into the second equation of (3.2) and integrating we obtain 

= 

cg+(z)=(2G - g + &-%I (El6 
0 

(3.4) 

When deriving (3.4) the following obvious relation was used: 

I,(g) ;+G(+)eG(l)==-g+ i 

The dependence on r of the monomer concentration clis determined by an equation resulting 
from (2.2) after substituting (3.1) 

Integration of this equation using (3.3) yields 

(3.5) 

Equation (3.5) together with (3.1), (3.3) and (3.4) enables us finally to determine ~~~(7) 
and cg+ (7). 

The change from the variable T to real time 't is made using the following formula, which 
follows directly from (3.2): 

(3.6) 

Note that unlike the case of G = oo , ‘c = CO corresponds to the instant t=w and not 
r = 1. This follows from the fact that the integrand in (3.6) has no singular points when f 
is finite. This information enables us to determine the final sediment spectrum 

ce'(t = oo)= %+(7=00)=(26-g+ i&-%(&)9 (3.7) 
0 

4. Let us analyze the asymptotic form of the results obtained when G) 1. We begin 
with the case when z<l,1 -->G-'. Neglecting TG , compared with 1, we find from (3.5), 
(3.6) and (3.7) 

: T=-, Cl(f)== 
r+-l 

(4.1) 

Q-(t) = - 
.2c-g ti- @+@*);+I 9 cg+w=g u + 1)’ 

The first three formulas of (4.1) do not differ from those when G 3~ 00. This has a 
simple explanation: the spectrum has not developed sufficiently to feel the constraints on 
the coagulation coefficient. Almost the whole mass of the dispersed phase is concentrated in 
the active part of the spectrum. The sink mass is small, like +. The basic events related 
to the transition of the active fraction to the sink develop in the neighbourhood of the point 
? = 1. This clearly shows in the asymptotic evaluation of the integral thati definesthe final 
sediment spectrum. 

To evaluate the integral on the right-hand side of (3.7), we divide the integrationregion 
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into three segments [O, 1 - Al, [I - A, 1 + A.l, [l + A, co)selecting the quantity A so that GA+ 
00 asG+ co, but GA*+O. The last condition allows the approximation (1 f A)c Z&A to be 
used. It can be shown that the integrals over the first and second segments are small, like 
e-GA ,so that it remains merely to evaluate the integral 

l+A 8 JAE - eexP[-221(f)]d~==exp[- 21(i)] :&~-..xPW(l(D- r(wE (4.2) 

When G is large (C is Euler's constant) 

I(l)=&nG+C 
k-1 

To calculate the difference I(t)-l(i) we make the change E = I+ XL\. Then 

CXA 

I(!$) - I (I).= 1 +- de E Q (GSA) 
0 

After the change,andsubstituting (4.3) into (4.2) we obtain 
l+A 

s 
es-2 exp[- 21 (Q] d& z A 5 exp [gxA - 2Q (gxA)] dx = 

1-A -1 
GA 

1 
T s 

exp [(I + h) s - ZQ (s)] ds= & i exp [(I +P)s- 2QM ds 
-GA -cm 

where the parameter h is introduced for convenience by the formula 

g=G(l+h), O,<h,<f 

Finally, the asymptotic form of the final spectrum of the sediment is 

m 
s 3-i cg’(-)=&(I-kh)cs 5 exp [(l+h)s-21Sd&lds 

-ca 0 

(4.3) 

(4.4) 

(4.5) 

The denumerable concentration of particles in the sediment is obtained by integrating 
the spectrum (4.5) 

(4.6) 

The condition for normalization on unit of mass was checked numerically. 
The relation Re(h)E G*c#+ (00) is tabulated below together with the results of numerical 

calculations of Re(h) using the exact formula (3.7) for G = 50 and G = 100, which enables 
us to follow the convergence of the spectrum to the asymptotic limit (4.5) : 

R, %, 
i,O 2,L i”:;, $4 oo:h* oo:i67 0:247 0 

Row - 1.92 i,os 0,592 0,294 O.G921 0,099 
&(A) - 1.93 i,O6 0,588 0,309 0,0999 0,016 

5. We will now consider the model K=2 (I, -i- 1, -i)e~(ZJ0~(~). The equationofthe active 
part of the spectrum in the variables v,z has the form 

(5.1) 

(5.2) 

The equation for the sediment spectrum follows from (2.3) 

dcp+ 

7=(g - 1) e, (g) Cl E vg_1vz 

I-1 
(5.3) 

We will seek a solution of (5.2) in the form /2/ 

vg- = r&g- (7) (5.4) 
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Substituting (5.4) into (5.2) and separating the variables, we obtain 

(5.5) 

To solve (5.6) we introduce the generating function 

F(z)= 5 rgzg 
8-l 

Assuming that r, = 1 (a corollary of initial condition (2.4)), from (5.6) we have 

F- Fj-2x0 

Solving this equation, we obtain 

C&-33)1 
r#==2 (g--2)lgI 

(5.7) 

Let us now establish the connection between h(r) and cl(r). Differentiating (5.5) with 
respect to z and using (5.1) we obtain cl' = c,h”/h’. Integrating this equation, we obtain 

Cl = h' (r) (5.8) 

which enables (5.3) to be integrated, giving 

The spectrum of the active part is 

cp- (r) = r&' (7) h’-’ (5.10) 

Equations (5.5), and (5.7)-(5.10) provide the complete solution of the problem. 

6. Let us analyze the results obtained in the limit of large G. For this we shall need 
the asymptotics 

r~ and &cb)'s rB_IrI 
I-1 

Using Stirling's formula, we obtain 

'g z 4r-1 (rr&-"1 

Then by definition (4.4) we have 

(6.1) 

(6.2) 

The next step is to solve (5.5) for the function h(r). From /2/ we know the result when 
G-w 

h (2) = 
T--zr, T<‘lt 

v,. T >‘/l, (T = ‘I, (1 - r-8’)) 
(6.3) 

This result can be used when Vz--~G-l. The value z= V, corresponds to the comple- 
tion of coagulation wherl G=. 00. All this means that the spectrum of the active part is 
exponentially small when t-G , and the limitation with respect to g is unimportant. The 
number of particles in the sediment is also exponentially small. Its spectrum may be obtained 
by combining (6.2), (6.3) and (5.9) 

(6.4) 

At the instant %I; To, when active transition of particles to the sediment begins (the 
finiteness of G then becomes important), the quantity h (To) becomes equal to l/4 and then, as 
will be shown below,beginstoexceedthe value mentioned (by a quantity of the order of C-1). 
When h &) = I/, we obtain h’(r,) from (5.5) and by the same token cl. For this we note that 
when r=~d 
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Hence h' = fI = (nG+. Thus at that moment the spectra take the form 

(6.5) 

(6.6) 

The mass M- of the active part of the spectrum, and the mass M* of the sediment are 
G 

M- (‘lg) = 5 gc, (no) dg = + 
0 
20 

&f+ (0) = gcg+ (TO) 4 = + 
s 

’ (I--b)dk =i_ 2 

o (i+A))/x- -F 

(6.7) 

The condition of conservation of mass M++ M-=i is satisfied. 
Let us now find the final sediment spectrum. For this the solution of (5.5) is required 

when r> '1,. It is independent of T, and we will seek it in the form 

(6.8) 

The equation for to is obtained after substituting (6.8) into (5.5), making the trans- 
formations 

and replacing the sums by the integrals (see (6.5)) 

(6.9) 

Numerical calculation gives &,,c0.8540. Now, combining (5.g), and the second formula 

(6.6) and (6.8), we obtain 

Normalization of the total mass to unity was checked numerically. The denumerable sedi- 

ment concentration iS 

(6.10) 

ZG 

N+ (00) = c#+ (00) dg = +- 

This completes the analysis of the second model. 

7. The solution for the model K = ~l~@G(Zl)eO(~~) proves to be in many respects similar 

to the previous ones. For the active part of the spectrum we obtain in the variables v,'c 

-1 

h 
G 

$-+G(g) (g - 1) h&v1- - (g - i) vg- c IV,- 

l-1 -1 

For the sediment spectrum we have 

(7.1) 

(7.2) 

(7.3) 

Equation (7.2) is solved by separating the variables, i.e. the solution is sought in the 

form (5.4). For h'and rB we obtain other equations 

Multiplying the first of them by z 8 and summing with respect to g, we obtain 
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zF’-F=zFF’, or FrF=z(F~z)E$gr&) 

From this, using contour integration , making the change of variable z+F and taking 
into acount the equations for F and F', we obtain 

(7.5) 

The connection between c,(?)and A(~ somewhat more complicated than in the preceeding 
case. Namely, from (7.1) and the first of (7.4) we obtain 4l1.1 (c,/h)- --l/h. Changing from 
z to t using the second of (3.1), we obtain 

dt (cl/h) = - (c,lh)2 
Hence 

h 
cl--i_ 

The spectrum is thus again expressed in terms of the single function h 

-- @-' h’ 
ce -glt 

* 

cl?+ 0) = + Wg) (g - 1) lrg-lrl s hg (t’) dt’ 
- w 

0 

(7.6) 

(7.7) 

(7.8) 

This completes the exact analysis. 

8. To investigate the behaviour of the solution for large G we again need the asymptotic 
form of the coefficients in (7.7) and of the sum in (7.8) 

eg 
5== (8.1) 

(8.2) 

Up to the instant when then cut-off factor G begins to affect the form of the coagulation 
spectrum, the function h(r) is easily determined. As G--r=, 
1. 

from (7.4) we obtain h,'+P(h)= 
Differentiating Fc°F=h with respect to h, we obtain (i - F)-s’Fb 

into the first equation, we obtain F,*= eF. 
and substituting it 

Then we have 

h(r)= fl--r)ln A. 
i 

I < 1 - e-1 

e-1, T>l--e-1 

Changing from T to t using (7.6) and the second of (3.1), we obtain 

* L 1 - c-1 

(8.3) 

(8.4) 

This relation holds up to the. instant t= 1. At t= 1 we have h(f)=e-a, the spectrum of 
the active fraction becomes exponential, and the effect of the cut-off factor G begins to be 
substantial. In an infinite system at this instant a super-particle is formed, and the 
Smoluchowski equation is no longer applicable /4/. The finiteness of G radically alters the 
situation. At r> 1 the particles begin to drop into the sediment. up to t=i ,as seen 
from (7.7) and (8.11, almost the whole mass is concentrated in the active part of the spectrum. 
Even at the critical instant t= i , the difference of M- from unity is of the order of G'l'. 
Then an appreciable sediment is formed at once. 

To trace the above process it is necessary to solve the first of (7.4) with r>i-e-1 . 
This has already been done above. This equation, except for the coefficients, is the same 
as (5.5), and the structure of its solution is the same 

h (7) = C-I exp &,g/G] 

The constant' Ea is, as previously, given by (6.9). The active 
iS 

To calculate the sediment spectrum it is necessary to evaluate 
side of (7.8). We divide it into the sum of two integrals: an 
and anintegral,along IL& For the first we obtain 

(8.5) 

part of the spectrum when 

(8.6) 

the integral on the right- 
integral along the segment 
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1 1 

s hg (t) t-2 dt = s -zi 
T-e 

-gg+ 
0 0 

This is the result of the estimate by the method of steepest descent for large g-G. 
The second integral makes a contribution that is V'a times greater. Hence in the limit 

of large g, taking into account (8.2), we have 

As (t - co) the final sediment spectrum is the same as that determined for the preceding 
model (see (6.10)). 

9. The qualitative picture of the coagulation process in the models considered is as 
follows. At the initial stage, when the effect of the sink has not made itself felt, the 
asymptotic form of the spectrum of the active fraction for large g is defined by the gamma 
distributions /l, 2/ 

c,- _ gv exp [---a (t) gl (9.1) 

For the models in the order they were considered y = 0, 3/ar “I2 and Q (t) = t-', @' , and 
In t-1 - t (t< 1 for the last model. 

Fig.1 

For the initial stage the condition a W G < 1 of low con- 
centration of particles of mass g-G is characteristic. From 
this follows the estimate of the time of the initial period t,- G 
and ln G,1 , respectively. 

In the transition period the spectrum of the active fraction 
becomes exponential: cp-- g-v, Then a (t)G - 1 from which the 
esimate of the duration of the transition period is t, N G, In G, 
G-V* (to obtain this result it is necessary to expand a (t) inseries 
in the neighbourhood of t= 1). During this period intensive 
formulation of sediment begins. 

Finally, the concluding stage is the formation of the final 
sediment spectrum. At this stage the effect of the sink israther 
curious. The exponential mass spectrum of the active fraction 
is modified exponentially with respect to the growing factor 

exp (E&G) in the case of the last two models. In the model with 
constant kernel the spectrum of the active fraction increases ex- 
ponentially and gradually concentrates near g-G. 

The third model deserves a separate comment. It has already 
been mentioned that in this model a superparticle is formed, when 

G=m and l>l /4/. However, the formal transition to G-00 in the formulas of Sect.8 
does not provide anything like that. This is not surprising, since the thermodynamic limit 
was considered (the particle concentration is finite and the total particle number in the 
volume of the system is infinite). Meanwhile, to establish the fact that a superparticle 
appears it is necessary to consider finite systems (see /4/j, and superparticle formation can 
be followed by passing to the limit c-00 , but G<G/N<oo . Here N is the total number of 
particles in the coagulating system. In the above investigation the ratio G/N =O and, 
naturally, the passage to the limit necessary for detecting the superparticle, is impractic- 
able. 
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